Iterative Quantiles Nearest-Neighbors

Karsten Maurer

Miami University

July 30, 2018

Introduction

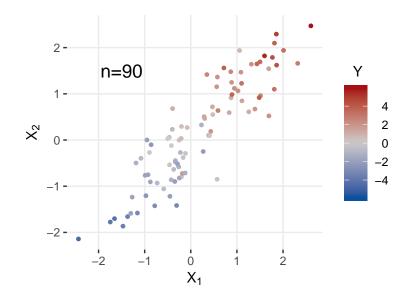
Motivation

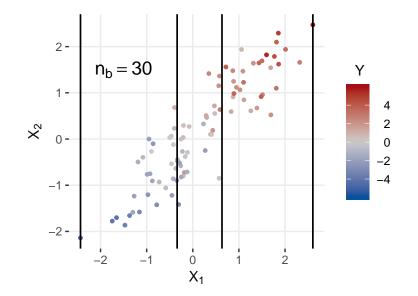
k Nearest-Neighbors (KNN):

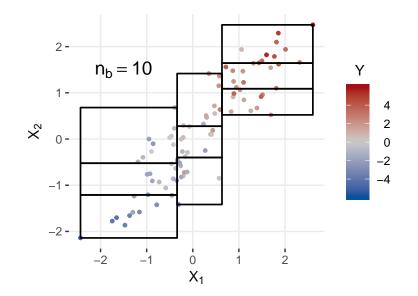
- Provides localized non-parametric estimation over feature space
- Computationally expensive distance calculations and sorting
- Efficient algorithms for approximate nearest neighborhoods (AKNN)
- kd-tree AKNN (Arya et al., 1998)
- cover-tree AKNN (Beygelzimer et al., 2006)

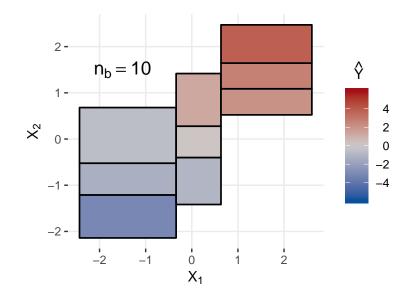
Iterative Quantile Nearest-Neighbors (IQNN):

- Can we make neighborhoods with binned-partitions of feature space?
- Checking for points in intervals fast
- Partition with k training points per partition
- Use iterative algorithm of quantile-based univariate partitions









IQNN Query Structure

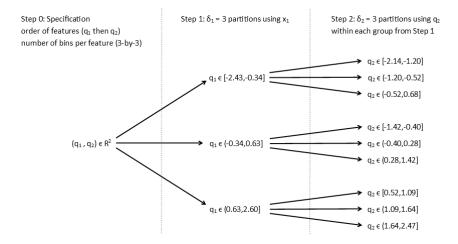


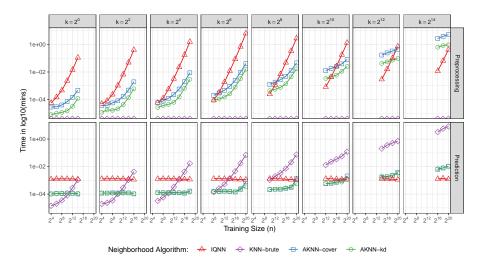
Figure 1: Interval R-tree structure generated by iterative quantile binning in simulated feature data example from above.

Evaluation

Computational Efficiency: Timing study

- \bullet Test with simulated data sets of varying sizes: $n{=}2^4, 2^6, \ldots, 2^{20}$
- Test with various neighborhood sizes: $k=2^{0},2^{4},\ldots,2^{14}$
- Speed of pre-processing with IQNN vs AKNN methods
- Speed of identifying neighboring points with IQNN vs AKNN methods

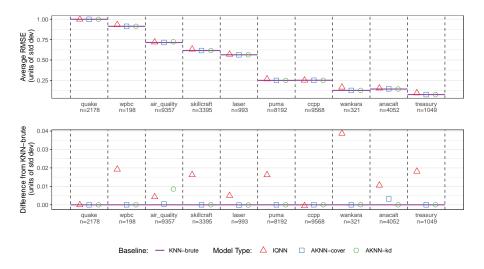
Timing Study



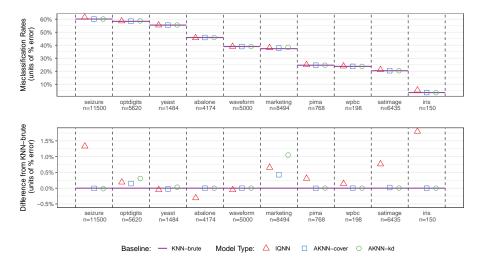
Predictive Accuracy: Empirical Comparison

- Test with real data sets: 10 regression problems, 10 classification problems
- Data Repos: UCI (archive.ics.uci.edu) and KEEL (sci2s.ugr.es/keel)
- Accuracy assessed using 10-fold CV with tuned models from each case

Regression Accuracy



Classifier Accuracy



Discussion

Results

Timing Study:

- Requires considerable pre-processing similar to other AKNN methods
- Queries on R-tree structure depends only on number of bins
- Advantage for large n, large k applications

Predictive Accuracy:

- Weak accuracy relative to KNN for regression less fine control on tuning parameters
- Comparable accuracy relative to KNN for classification neighborhood voting robust

Thank you for listening!

Any Questions?

contact: maurerkt@miamioh.edu

Algorithm (detail)

Specification: Define order of features $\{X_1, X_2, ..., X_p\}$ to match desired iterative binning order and number of bins $\{\delta_1, \delta_2, ..., \delta_p\}$ for partitioning in each dimension

Binning:

Q Partition all points into δ_1 quantile bins on feature X_1 with index sets $\{B_1, ..., B_{\delta_1}\}$ such that $B_{\ell} = \{i \mid b_{X_1}^q(x_{i1}) = \ell\} \forall \ell = 1, ..., \delta_1$

2 Repeat the following for
$$j = 2, ..., p$$
:

Of Define $C_{st} = \{i \mid i \in B_s \text{ and } b_{X_j}^q(x_{ij}) = t\} \forall s = 1, ..., \prod_{d=1} \delta_d \text{ and } t = 1, ..., \delta_j$

to subdivide each B_s from previous step with δ_j quantile bins on feature X_j

(1) Redefine index sets $\{B_1, ..., B_L\}$ such that $B_\ell = C_{st}$, where $\ell = t(s-1) + t$ to combine parent and child indices of sets into unique indices

Outputs:

Bin neighbor sets
$$\vec{\mathbf{x}}_{\ell} = \{\vec{x}_i \mid i \in B_{\ell}\} \ \forall \ \ell = 1, ..., L$$
, where $L = \prod_{i=1}^{r} \delta_i$

Hyper-rectangular bins $\ell=1,...,L$ containing points $x_{ij}\in (eta_{j\ell 1}\ ,\ eta_{j\ell 2}]\ orall\ j=1,...,p$

D