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Introduction
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Motivation

k Nearest-Neighbors (KNN):

Provides localized non-parametric estimation over feature space
Computationally expensive distance calculations and sorting
Efficient algorithms for approximate nearest neighborhoods (AKNN)
kd-tree AKNN (Arya et al., 1998)
cover-tree AKNN (Beygelzimer et al., 2006)

Iterative Quantile Nearest-Neighbors (IQNN):

Can we make neighborhoods with binned-partitions of feature space?
Checking for points in intervals fast
Partition with k training points per partition
Use iterative algorithm of quantile-based univariate partitions
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IQNN - Simple Demonstration
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IQNN - Simple Demonstration
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IQNN - Simple Demonstration
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IQNN - Simple Demonstration
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IQNN Query Structure

Figure 1: Interval R-tree structure generated by iterative quantile binning in
simulated feature data example from above.
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Evaluation
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Evaluating IQNN Performance

Computational Efficiency: Timing study

Test with simulated data sets of varying sizes: n=24,26,. . . ,220

Test with various neighborhood sizes: k=20,24,. . . ,214

Speed of pre-processing with IQNN vs AKNN methods
Speed of identifying neighboring points with IQNN vs AKNN methods
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Timing Study
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Evaluating IQNN Performance

Predictive Accuracy: Empirical Comparison

Test with real data sets: 10 regression problems, 10 classification
problems
Data Repos: UCI (archive.ics.uci.edu) and KEEL (sci2s.ugr.es/keel)
Accuracy assessed using 10-fold CV with tuned models from each case
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Regression Accuracy
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Classifier Accuracy
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Discussion
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Results

Timing Study:

Requires considerable pre-processing similar to other AKNN methods
Queries on R-tree structure depends only on number of bins
Advantage for large n, large k applications

Predictive Accuracy:

Weak accuracy relative to KNN for regression - less fine control on
tuning parameters
Comparable accuracy relative to KNN for classification - neighborhood
voting robust
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Thanks!

Thank you for listening!

Any Questions?

contact: maurerkt@miamioh.edu

Karsten Maurer (Miami University) Iterative Quantiles Nearest-Neighbors July 30, 2018 17 / 18



Algorithm (detail)

Specification: Define order of features {X1,X2, ...,Xp} to match desired iterative binning
order and number of bins {δ1, δ2, ..., δp} for partitioning in each dimension

Binning:
1 Partition all points into δ1 quantile bins on feature X1 with index sets
{B1, ...Bδ1} such that B` = {i | bq

X1
(xi1) = `} ∀ ` = 1, ..., δ1

2 Repeat the following for j = 2, ..., p :
i Define Cst = {i | i ∈ Bs and bq

Xj
(xij) = t} ∀ s = 1, ...,

j−1∏
d=1

δd and t = 1, ..., δj

to subdivide each Bs from previous step with δj quantile bins on feature Xj

ii Redefine index sets {B1, ...,BL} such that B` = Cst , where ` = t(s − 1) + t
to combine parent and child indices of sets into unique indices

Outputs:
i Bin neighbor sets ~x` = {~xi | i ∈ B`} ∀ ` = 1, ..., L, where L =

p∏
j=1

δj

ii Hyper-rectangular bins ` = 1, ..., L containing points xij ∈ (βj`1 , βj`2] ∀ j = 1, ..., p
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