Comparison of Learning Outcomes from Traditional and Randomization-Based Inference Curricula in a Designed Experiment

> Karsten Maurer*, Iowa State University Dennis Lock, Miami Dolphins

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Outline

- Comparing Inference Curricula
- Experimental Design
- Data Collection
- Model
- Results
- Conclusions

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Comparing Inference Curricula

- Traditional Approach
 - Central Limit Theorem
 - Normal Based Inference
 - Normal Tables and Formulas
- Randomization-Based Approach
 - Bootstrap Confidence Intervals
 - Randomization/Permutation Tests
 - Tactile and Computer Simulation

DEPARTMENT OF STATISTICS

Iowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Comparing Inference Curricula

Week	Traditional Curriculum	Randomization-Based Curriculum
1	Introduction	Introduction
2	One Variable Descriptive	One Variable Descriptive
3	Two variable Descriptive	Two variable Descriptive
4	Linear Regression	Linear Regression
5	Experimental Design	Experimental Design
6	Probability	Probability
7	Binomial Distribution	Binomial Distribution
8	Midterm Exam	Midterm Exam
9	Normal Distribution	Sampling Distributions
10	Sampling Distributions	Bootstrap Confidence Intervals
11	Central Limit Theorem (CLT)	Randomization Tests
12	Inference for single proportions	Normal Distribution and CLT
13	Inference for prop. and means	Inference for single proportions
14	Inference for single means	Inference for single means
15	Inference for two means	Inference for two means
16	Final Exam	Final Exam

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Experimental Design

- 116 Students enrolled into Stat 104
 - 4 Students dropped by week 2
- 112 Students randomly assigned to inference curricula beginning in week 9
 - 11 Students did not consent to data release
 - 101 Students consented to data release
- Experimental Design utilized co-teaching structure and room scheduling isolate curricula effect

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

46 Consenting Students in Section 1 Lecture TR 8:00-9:00 Lab F 8:00-10:00

55 Consenting Students in Section 2 Lecture TR 8:00-9:00 Lab F 10:00-12:00

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Co-teaching Structure

Instructor 1 (Dennis Lock)

Instructor 2 (Karsten Maurer)

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Week 1

(Non-Inference Topics)

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Week 2

(Non-Inference Topics)

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Week 1,3,5,7

(Non-Inference Topics)

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Week 2,4,6,8

(Non-Inference Topics)

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Random Assignment

Students to Inference Curricula Needed for Weeks 9-16

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences Comparison of Learning Outcomes from Traditional and Randomization-Based Inference Curricula Karsten Maurer*, Dennis Lock

.

Random Assignment

Green = Traditional Yellow = Randomization-Based

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Split to New Rooms

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Week 9

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Week 10

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Week 9,11,13,15

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Week 10,12,14,16

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Data Collection

- Course Administration
 - Inference Curriculum Treatment
 - Enrollment Section
- Pre-Treatment Measures
 - Homework 1-7 Scores
 - Lab 1-7 Scores
 - Midterm Exam Score
- Learning Outcomes: ARTIST scaled question sets
 - Hypothesis Testing (HT score)
 - Confidence Intervals (CI score)

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Model

- Student HT and CI scores are bivariate responses
- Use MANCOVA model to incorporate administrative and pre-treatment variables as covariates
- Start with full model including all covariates
- Backward stepwise selection based on AIC
- Final model reduced to three covariates: midterm score, Lab 5 score, curriculum treatment

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Results

• Tests for Overall Covariate Significance

	Pillai's Λ	Approx. F Stat	p-value
Midterm	0.2109	12.8277	< 0.001
Lab 5	0.0792	4.1261	0.0191
Curricula	0.0469	2.3605	0.0998

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Results

• Model Coefficients

	HT coefficient (SE)	CI coefficient (SE)
Intercept	2.1053 (1.0584)	1.4648 (1.0135)
Midterm	0.0386 (0.0118)	0.0477 (0.0113)
Lab 5	0.8547 (0.6618)	1.8274 (0.6337)
Curricula	0.3050 (0.3532)	0.7146 (0.3382)

***Bold** indicates a significant effect at the α = 0.05 level

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Conclusions

- Randomization-based inference curriculum has a significant improvement in CI learning outcomes
- 7% improvement on the ARTIST scale for CI
- No significant effect of curricula on HT outcomes
- Consider causality and applicability of results
 - Experimental design allows for causal inference
 - Representative of all introductory students?
 - What about treatment lead to improved learning outcomes?

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Thanks!

- Dennis Lock : Co-investigator
- Dr. Heike Hofmann: Study Advisor
- Dr. Bob Stephenson : Study Advisor
- All of you for attending

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences

Any Questions?

- If time does not permit question:
 - Please look for publication (to be submitted next week)
 - Contact me (karstenm@iastate.edu)

DEPARTMENT OF STATISTICS

lowa State University College of Liberal Arts and Sciences College of Agriculture and Life Sciences