
Searching for Unknown Unknowns

Context: You have a classifier that you wish to apply to a domain in which you

only have access to a large set of unlabeled test instances.

Problem: You know that the classifier was trained in a different domain, or you

suspect a bias in the training set relative to the testing

Goal: Select a set of instances from the unlabeled set that we will look up true

labels which we use to evaluate the classifier performance. This is called

a query of the unlabeled set.

An oracle is the person who will find the true labels. We don't want to waste the

oracle's time, so we need a smart way to query the unlabeled set.

What could we look for in the query set?

Attenberg et al. (2015) define Unknown Unknowns (UUs) as instances, 𝑥, from

unlabeled test set where the classifier, 𝑀(𝑥), is both:

1. Highly confident. Above some threshold 𝜏 ∈ (0,1) Thus, c𝑥 ≥ 𝜏
2. Wrong. Misclassified with 𝑦 ≠ 𝑀(𝑥)

Why would we care about finding UUs in query set?

High confidence mistakes lead to unmitigated risks in application of classifier

Characteristics of the UUs may help analyst to understand classifier deficiencies

Empirical Experimentation

To compare query algorithms ability to identify overconfident points, we evaluate performance of

methods on classifiers for four real datasets

• Pang04 and Pang05 – Rotten Tomatoes

text classifiers intentionally biased toward

subjective reviews. Exhibits strongest

overconfidence when 𝑐𝑥 ∈ (0.65, 0.8)

• McAuley15 – Amazon reviews text

Classifier trained on electronic products,

then applied to book reviews. Exhibits

Strongest overconfidence when 𝑐𝑥 ∈ (0.85, 1.0)

• Kaggle13 – Cat vs. Dog image classifier trained

without dark fur cats, then applied to all. Exhibits

Strongest overconfidence in points with 𝑐𝑥 ∈ (0.75, 0.95)

Facility Locations Utility for Uncovering Classifier Overconfidence

Karsten Maurer1 – Walter Bennette2

Miami University Dept. of Statistics1 – Air Force Research Lab2

Existing Utility-Based Query Algorithms

Attenberg et al. (2015) - Crowdsource

• "Beat the Machine" game with monetary rewards for finding UUs

• Crowdsourcing as mechanism for learning classifier deficiencies

• Basically like using many oracles with large budget for labelling

Drawback – Can’t scale for budgeted oracle queries

Lakkaraju et al. (2017) - Multi-Armed Bandit

• Adaptive query algorithm that updates the optimal recommendation for next

oracle query after evaluating the newly labeled instance

• Utility function adds unit value for each UU and penalizes by the cost of labeling

Drawback - Fundamentally place value on finding any UU, regardless of

confidence

Bansal and Weld (2018) - Coverage-Based

Another greedy query algorithm, but uses coverage-based utility

Goal is to encourage both discovery of UUs and exploration of feature space

𝑈 𝑄 = ෍

𝑥∈𝑿

𝑐𝑥max
𝑞∈𝑆

{𝑠𝑖𝑚 𝑥, 𝑞 }

𝑿 ⊂ ℝ𝒑 is p-dimensional unlabeled test set

𝑄 ⊂ 𝑿 is the set of points labeled by an oracle

𝑆 = 𝑥 𝑥 ∈ 𝑄 , 𝑦𝑥 ≠ 𝑀 𝑥 } is the set of discovered UUs

𝑐𝑥 is the classifier's confidence in its prediction of 𝑥
𝑠𝑖𝑚(𝑥, 𝑞) is a distance-based similarity metric.

Drawback - The utility-based algorithms err toward instances that are "safe bets";

instances with confidence just above the 𝜏 threshold.

Facility Locations Search Algorithm

Facility Locations Utility Function

𝑊 𝑄 =෍

𝑞∈𝑆

log
1

1 − 𝑐𝑞
−෍

𝑥∈𝑿

min
𝑞∈𝑆

(𝑑 𝑥, 𝑞)

log
1

1−𝑐𝑞
is the reward function for finding a misclassification with

confidence 𝑐𝑞
𝑑 𝑥, 𝑞 is the Euclidean distance between points 𝑥 and 𝑞.

Algorithm for Greedy Facility Location Search

Input:

Test set 𝑿, prior ෠𝜙(𝑥|𝑄 = ∅), budget B

𝑄 = { } inputs that have been queried, 𝑦𝑄 = { } oracle defined labels

For: b = 1, 2, ..., B do:

𝑞′ = argmax
𝑞′∉𝑄

𝐸෡𝜙[𝑊 𝑄 ∪ 𝑞′

𝑄 ← 𝑄 ∪ 𝑞′

𝑦𝑄 ← 𝑦𝑄 ∪ 𝑦𝑞′
𝑆 ← 𝑥 𝑥 ∈ 𝑄 , 𝑦𝑥 ≠ 𝑀 𝑥 }
෠𝜙 ← ෠𝜙(𝑥|𝑄)

𝑏 ← 𝑏 + 1
Return: 𝑄, 𝑆 and 𝑦𝑄

Adapting Utility Objectives to Overcome Deficiencies

• The focus on discovering Unknown Unknowns, as defined in previous literature, is misdirected.

• High confidence should not be interpreted as an absolute. Misclassifications should be occurring.

• The problem is when the rate of misclassification exceeds the rate expected based on confidence.

Adapted Objectives for Query Based on Facility Locations Utility:

1. Our goal should be to query instances that demonstrate classifier overconfidence; containing more

misclassification than should be expected based on classifier confidence.

2. Our query should also seek to thoroughly explore the feature space.

Efficiency of Discovering Overconfident Points

Standardized Discovery Ratio is a ratio of discovered misclassifications to the

expected based on confidence

90% Monte Carlo central intervals

and medians from 1000 random

initializations of each algorithm

Results

• All methods discovering errors at

about same rate as most uncertain

for Pang04 and Pang05, where

overconfidence is highest just above 𝜏

• Facility Location search efficiently

discovers mistakes relative to rate

expected based on model confidence

for McAuley15 and Kaggle13 datasets

Comparisons of Utility Relative to Baseline Query Algorithm

Conclusions

• Facility locations query algorithm performs well across all
overconfidence profiles seen in empirical evaluations

• SDR improves as budget increases, but this
learning can be slow and inconsistent

• There is the need for an effective unsupervised query
algorithm to initialize the utility-based searches

